Gaussian synapses for probabilistic neural networks
نویسندگان
چکیده
منابع مشابه
Novel Radial Basis Function Neural Networks based on Probabilistic Evolutionary and Gaussian Mixture Model for Satellites Optimum Selection
In this study, two novel learning algorithms have been applied on Radial Basis Function Neural Network (RBFNN) to approximate the functions with high non-linear order. The Probabilistic Evolutionary (PE) and Gaussian Mixture Model (GMM) techniques are proposed to significantly minimize the error functions. The main idea is concerning the various strategies to optimize the procedure of Gradient ...
متن کاملNeural Networks with Dynamic Synapses
Transmission across neocortical synapses depends on the frequency of presynaptic activity (Thomson & Deuchars, 1994). Interpyramidal synapses in layer V exhibit fast depression of synaptic transmission, while other types of synapses exhibit facilitation of transmission. To study the role of dynamic synapses in network computation, we propose a unified phenomenological model that allows computat...
متن کاملStructured Probabilistic Neural Networks
Probabilistic inference networks capture the stochastic relation between variables by ‘directed’ probabilistic rules corresponding to conditional probabilities, e.g. p(Ak|Ai∧Aj). Associative neural networks – like Boltzmann machine networks – yield a joint distribution, which is a special case of the distribution generated by inference networks. In this paper conventional associative neural net...
متن کاملProbabilistic neural networks
-By replacing the sigmoid activation function often used in neural networks with an exponential function, a probabilistic neural network ( PNN) that can compute nonlinear decision boundaries which approach the Bayes optimal is formed. Alternate activation functions having similar properties are also discussed. A fourlayer neural network of the type proposed can map any input pattern to any numb...
متن کاملGaussian Mixture Models and Probabilistic Decision-Based Neural Networks for Pattern Classi cation: A Comparative Study
Probabilistic decision-based neural networks (PDBNNs) can be considered as a special form of Gaussian mixture models (GMMs) with trainable decision thresholds. This paper is to provide detailed illustrations to compare the recognition accuracy and decision boundaries of PDBNNs with that of GMMs through two pattern recognition tasks, namely the noisy XOR problem and the classi cation of two-dime...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nature Communications
سال: 2019
ISSN: 2041-1723
DOI: 10.1038/s41467-019-12035-6